Reiterative expression of pax1 directs pharyngeal pouch segmentation in medaka.

نویسندگان

  • Kazunori Okada
  • Keiji Inohaya
  • Takeshi Mise
  • Akira Kudo
  • Shinji Takada
  • Hiroshi Wada
چکیده

A striking characteristic of vertebrate development is the pharyngeal arches, which are a series of bulges on the lateral surface of the head of vertebrate embryos. Although each pharyngeal arch is segmented by the reiterative formation of endodermal outpocketings called pharyngeal pouches, the molecular network underlying the reiterative pattern remains unclear. Here, we show that pax1 plays crucial roles in pouch segmentation in medaka (Oryzias latipes) embryos. Importantly, pax1 expression in the endoderm prefigures the location of the next pouch before the cells bud from the epithelium. TALEN-generated pax1 mutants did not form pharyngeal pouches posterior to the second arch. Segmental expression of tbx1 and fgf3, which play essential roles in pouch development, was almost non-existent in the pharyngeal endoderm of pax1 mutants, with disturbance of the reiterative pattern of pax1 expression. These results suggest that pax1 plays a key role in generating the primary pattern for segmentation in the pharyngeal endoderm by regulating tbx1 and fgf3 expression. Our findings illustrate the crucial roles of pax1 in vertebrate pharyngeal segmentation and provide insights into the evolutionary origin of the deuterostome gill slit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The function of DrPax1b gene in the embryonic development of zebrafish.

Vertebrate Pax1 gene is a member of Pax gene family and encodes a transcription factor associated with crucial roles in the development of pharyngeal pouch, scletrotome and limb bud. In zebrafish, the genome contains two Pax1 paralogs, DrPax1a and DrPax1b, which share high sequence similarity with other Pax1 genes. To elucidate the function of zebrafish DrPax1b gene, we first examined the gene ...

متن کامل

Pax1/Pax9-Related genes in an agnathan vertebrate, Lampetra japonica: expression pattern of LjPax9 implies sequential evolutionary events toward the gnathostome body plan.

Among the transcription factor gene families, Pax genes play important and unique roles in morphological patterning of animal body plans. Of these, Group I Pax genes (Pax1 and Pax9) are expressed in the endodermal pharyngeal pouches in many groups of deuterostomes, and vertebrates seem to have acquired more extensive expression domains in embryos. To understand the evolution of Pax1/Pax9-relate...

متن کامل

An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning.

Fibroblast growth factor (Fgf) proteins are important regulators of pharyngeal arch development. Analyses of Fgf8 function in chick and mouse and Fgf3 function in zebrafish have demonstrated a role for Fgfs in the differentiation and survival of postmigratory neural crest cells (NCC) that give rise to the pharyngeal skeleton. Here we describe, in zebrafish, an earlier, essential function for Fg...

متن کامل

Tooth replacement and putative odontogenic stem cell niches in pharyngeal dentition of medaka (Oryzias latipes).

The small-sized teleost fish medaka, Oryzias latipes, has as many as 1000 pharyngeal teeth undergoing continuous replacement. In this study, we sought to identify the tooth-forming units and determine its replacement cycles, and further localize odontogenic stem cell niches in the pharyngeal dentition of medaka to gain insights into the mechanisms whereby continuous tooth replacement is maintai...

متن کامل

Roles for FGF in lamprey pharyngeal pouch formation and skeletogenesis highlight ancestral functions in the vertebrate head.

A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to refl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 143 10  شماره 

صفحات  -

تاریخ انتشار 2016